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Preliminary Remarks

This report can be said to have two parts. The first part is an
elucidation of some notions and principles assembled by the senior writer to
expedite the calculation of the lag function.

The second part consists of detailed instructions on how to program the
concepts presented in the first part. It was written by the senior writer
with a view to expediting the understanding of an unknown program writer of
unknown capacities. As a consequence, it is perhaps too elementary in
character to appear here. However, an instructional precept of some merit is
that it is better to over- rather than under-simplify. Time loss to the

knowledgeable should be negligible if scanning is used judiciously.

Background ‘aterial

The term "lag function” refers to a complex function of k, which when

written out in full is [1]1%

2

u .
e2qu dq

B(k) = - 5% 2k L(2k)

t 2‘kt2

; _t. .74l .

+ f ey e dt
o]

The development of algorithms for computing the double integrals within the

O
P
+
>

braces is the problem of interest here.

*, :
Numbers in brackets designate references at end of paper.

——
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The j in the exponential function is the imaginary unit and, since

X+iy X .X
e =¢ cosy+tie siny ,

one has

. 2 2 . .
eka(q -t ) = cos Zk(qz - tz) + i sin Zk(qz - tzj

cos 2kq2 cos 2kt2 + sin qu2 sin 2kt2

+ i[sin 2kq2 cos 2ktZ - cos qu2 sin 2kt21

Complex arithmetric is ruled out of the calculation in order to preserve
. ) . 2jk(q“—c2}

desirable attributes of the expanded form of e so that the two

integrals become eight integrals with each integrand containing a

trigonometric product as a factor.

Let the g-axis be vertical and the t-axis horizontal. Then each of the
products will be seen to vanish on a set of horizontal lines and a set of
vertical lines that subdivide the two areas of integration, infinite strips
bounded by q = 0 and q = 1, into rectangles in which the trigonometric factor,
moving either horizontally or vertically, alternates in sign. As a
consequence, if thne intcgrals are considered as composed of the sum of the
integrals on the rectangles, then cach double integral is equivalent to the
sum of the sums of a finite set of alternating series infinite in the t-
direction, 1t follows that, if each integral is evaluated by the rectangles
in a row, row by row, the question of "far enough” becomes the question of
far enough for the infinite series. Since the algebraic component in the
integrand of each integral does not change sign in the area of intesration,
the series are strictly alternating and so the far-enouwh question is casily

answered.
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The problem of evaluating the lag function thus reduces to evaluating a
number of double integrals, each with an integrand well behaved in the
rectangle of definition. Evaluating a multiple integral by iteration, § has
a cyclical character. Algorithms with cyclical properties tend, in program
form, to be relatively simple, which suggests that iteration is the method of
choice. To write a program in iterated form for a wmultiple integral, one
first chooses a one-dimensional quadrature. This quadrature 's then expanded
to two (or more) dimensions by writing its quantities, except for an obvious
few, with one additionai independent variable, the additional variable

indicating a level of integration in the iteration.

Controlling Error in Numerical Integration

As anyone at all experienced in the art of computing well knows, a prime
difficulty in the computing of tables is the problem of keeping the incidence
of unacceptable errors sufficiently small, for errors seem to creep in with ~n
inevitability that sometimes seems to suggest the guidance of a malign hand.
The true cause, of course, is the many points of possible entry, ranging from
faulty computing procedures to a simple inversion of digits in those inputs
and outputs handled by a human hand. The best of all checks, one seldom
available, is the existence of a relationship between the final outputs which
is known to hold. Unfortunately, no such check seems to exist for the final
outputs of the lag function except the one always possible for results in
tabular form, namely, finite differencing. The values given for the lag

function were subjected to this test, although the test's efficacy was
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diminished some by the necessity of using mostly divided differences rather
than ordinary. Divided differences tend not to indicate a faulty entry as
precisely as ordinary differences do.

To make up for the lack of a dependable final check, considerable care
was taken to ensure that the accuracy of each of the individual numerical
integrations was good to three, if not four, significant figures. 1In general,
there is no means of estimating an error in an evaluation by a particular
quadrature formula other than comparing it with another evaluation using
another guadrature differing in some significant respect. Some comparisons,
however, do not always give reliable estimates because of a cancellation of
errors.

A favored procedure for numerical evaluation of a definite integral
begins by dividing the interval of integration into subintervals. The
subdividing is likely to be guided to some degree by the perceived character
of the integrand and by the choice of the quadrature formula which is to be
used in the subintervals. The chosen quadrature obtains from the set of
subintervals, a set of subintegrals which when summed is taken as a first
approximation. A second approximation is then formed by using the same
quadrature on the set of subintervals that come from halving the lengths of
the subintervals in the first set. The two evaluations are comparad by
taking their difference. 1If the difference is sufficiently small, the
second approximation is then accepted as final.

Suppose the quadrature chosen is one of the Newton-Cotes kind, say,

Simpson's rule. Consider the subapproximation ohtained on one subinterval of

the first set. 1t can be written in the form
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i
Z vy ¥4y, +y,)

where h is the interval length and yjy and y, are ordinates at its end points
and y, at its midpoint. The iaterval length for the matching two subintervals

of the second set is h/2 and their quadrature formula becomes

h 7
Ti-kyO + Ayl + 2y7 + 4y3 + ys) .

The difference between the two subresults will be sceen as h multiplied into
a fourth order finite difference: ha*y/12.

That the difference between the two quadratures is found to be a constant
multiple of a fourth order finite difference is not entirely happenstance.
For, as will be shown, the aifference between any two quadratures on the same
interval is always a linear combination of finite differences of the order of
the lower of the two quadratures. 1In the case just considered, both
quadratures are of the fourth order, and accordingly, their difference must be
a linear combination of tourth order finite differences, which it is, though
it consists of only one term.

A more interesting example is had in the difference between Simpson's
rule and the four term Newton-Cotes formula:

I

hiyy + 3y, + 3y, +yq40/8 .

1

To have the seven abscissas of the two formulas fall evenlv in a common
interval, it is necessary to subdivide the {nterval (0,h) into six equal

parts. The seven abscissas are then given by the relation

X = kh/6, k = 0,1,2,...6 .

It follows that Simpson's rule takes the form
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h(y0 + 4y3 + yb)/b .
the four term formula, the form
hly

Ve
ot 3y2 + 3y,4 + ygl’S

and the difference may be written as
h[y6 - 9ya + 16y3 - 9y2 + yO]/48 .

The parenthetical quantity with yg and yy, added and subtracted, is

equivalent to

¥y = vyl F vy =y,

s

. ~ \ , _ o _ . _ \
(g = v5) * lyg - v, ) =8y, = vy) +8lyy = yy) *

or, in terms of first order finite differences, to
Ays + Aya - 8A_v3 + 8Ay2 - Ay1 - Ayo .

This conversion of 1 linear combination of finite differences of order zero
! to one of the first order is accomplished by grouping. Additional groupings,
three in number, reduce the initial linear combination to one of the fourth

/, . /, !,
order*: &rya 4+ S0y + Aty

* . . .
The sane rasult can be obtained more easily by a parallel to synthetic
division. Consider the following array which is like that of synthetic
division.

1 2 -9 16 -9 0 SN
1 1 -8 3 -1 -1

1 1 -8 38 -1 -l Y
1 2 ) 2 1
1 2 -6 2 1 I

13 -3 -l I 1
1 4 1
1 4 1
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The first course of numbers in this display are the numerical
coefficients in the linear combination of finite differences ot order zero;
the second, the coefticients in the linear combination of {irst order
differences and so on, course by course. The last fully interpreted is

a linear combination of the kind designated bv the principle stated above.
The full expression for the difference between the two original quadratures
becomes

’ 4 4 4 A
hid Y, + A y1 + A yn/\/ad .

The principle Jives only the order of the finite differences in the
final linear combinations. 1t does not ygive the coefficients or the total
nunber of the differences. The latter quantityv, however, can be deduced
from the total nunber of abscissas ian the difference of the quadratures.
The number of abscissas involved in the case using Simpson's rule is five.
On tive points only one fourth order finite difference is possible. 1In
the second case with the addition of abscissas x9 and x,, the total is
seven, Without going through the whole procedure, one knows that only
thiree finite fourth order differences are possible. So all that is
learned from the full procedure is that the multipliers (1,4,1), each
divided by 48, will appear in the final result.

Both error estimates in the two illustrative examples are combinations
of ordinary fourth order finite differences. So, if the integrands in the

subintervals have small variation, the individual errors, and also the sum

TR AYS. gy oy
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sum of their absolute values over the subintervals, can he expected to
diminish with some rapidity as the subintervals are halved. [In the

instance of the scecond example, however, cancellation between the three

finite differences may iundicate an error appreciably less than actual and
allow acceptance of an incorrect result. This may seem very iwmprobable
but the writer's experience suggests that, when it comes to errors,
Murphy's law always should be remenmbered.

The Newton-Cotes formulas with their even spacing often have a
desirable simplicity in some applications of numerical inteuration. They
are, as is well known, much less powerful than those of the Gaussian
xind. The calculation of the lay {unction, though not awe iaspiring
by todav's standards, is still large enough to warrant using Gaussian
quadritures,

The priaciple, whose validity was established in two instances with
quadratures of the Newton-Cotes kind also holds for the Gaussian, the
Radau, the Lobatto quadratures and others, but because of the uneven
spacing of their abscissas, ordinary finite differences must be replaced
by divided. Divided differences do not yield so readily to manipulation,
A proof of general validity must be found.

ne {llustrative example tells in essence the whole story. Suppose
the two quadratures are the two term and the three term Gaussian

quadratures on the same interval. Let the two quadritures be represented

by the quantities

and
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Co¥p * Ca¥y TSy,

where the c¢'s are weights and the y's ordinates, Consider their difference

The two term Gaussian gives the exact value of the integral of any polynonial
of third degree, the three term Gaussian, of any polynomial of the fifth
degree. Let the polynomials be the first four powers of x, namely, 1, x,

x2 and x3. Both formulas give the exact value of the integrals for these
powers of x. When each power is used in succession to supply values for the
ordinates in the difference, one obtains a system of four homogeneous

equations in the c's:

(o

[y

j=0

The rank of the matrix of the system is three, Therefore, a solution of

the four-equation system exists, other than Chp =€) = ¢y =cg=¢

constant multiple of this solution is also a solution. The fourth order

. Any
4 3

o s s ee . . ( A LN
finite difference on the five points (xo,yo), (xl,yl), \X55¥9 s Lxg,}3/
and (KA’Y4] is also a linear combination of ordinates and also must vanish
for the four powers of x. 1In view of the generality of this last proof of
the principle stated above, it must be true for any two quadrature

formulas,
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A Succession of Explanatory Alzorithms Preliminary

Lo the YWorking Alworithms

Although the senior author, over the years, has formulated a number of
algorithms tor expression and calculation in the language of FORTRAN, he has
never written a program in the language, only through the services of an
intermediary. 1Illiteracy in FORTRAN and, for that matter, all computer
languages persisted until the appearance of JOSS*, a language so obvious
and consistent in terminology and forms that to learn it is a negligible
task and to write a program in it, a pleasure.

In the case of the lag function, several algorithms tor approximating
its definite integrals were written in JOSS and checked tor faults. All
use basic Gaussian quadratures: one of two terms, one of three, and one
of four. The K-th abscissa of the quadrature of J terms is represented
by D(J,K) and the K-th weight by C(P,K). For the interval (0,1), the values

of the C's are:

C(2,1) = .5 , C(2,2) = C(2,1)

c(3,1) = .2777 ... s C(3,2) = 444 ... ,
€(3,3) = C(3,1)

C(4,2) = .326072577431273 , C(4,1) = .173927422563727 ,
C(4,3) = C(4,2 C(4,4) = C(4,1)

and the values of the D's are:

05 - v3/6 y D(Z,Z) = l - D(Z,l) s

n2,1) =

D(3,1) = .112701665379258 , D(3,2) = .5 ,
D(3,3) =1 - D(3,1)

D(4,1) = .069431844202973 . D(4,2) = .330009478207572

D(4,3) = 1 - D(4,2 , D(4,4) =1 - (4,1)

*An acronym for "Johnniac Open Shop System”.
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The first of the explanatory algorithms, explanatory with regard to JOss
and to the working algorithms, follows:

Alrorithm 1¥

1.12 Set U = - A

1.18 Set J = 1

1.3 Set V(J) =0

1.3 Set K =10

1.4 Set J =J + 1]

1.42 Set V(J) =0

1.5 Set K=K + 1

1.52 Set X = A + D(J,K)*H

1.56  Set V(J) = v(J) + V(J,)*H*F(X)
1.58 To Step l.48 it K < J

1.62 To Step L.94 if {V(J) - v(J-1)]

l.04 To sStep 1.38 if J < 4
1.94 Type V(J).

N

This program, which is capable ot approximating the definite integral
of F(X) on the interval (A,B), exhibits several essential characteristics
of the JUSS language: Programs are written in parts, where a part is similar
to a FORTRAN subroutine with a return. A part is made up of a succession ot
numbered commands. The number on a command is the sum of an integer, which
does not ditffer for commands from the same part and a decimal fraction.
The commands are grammatical to the extent that the first letter of the first
word, alwavs a verb in the imperative mood**‘ is capitalized and the end of
the command is siznaled by a period.

The tlow of the program is casily vrasped. The body of the progran
implements the three quadratures one by one in a cvelical tashion.s  The

quantity E in Step 1.62 specifies an allowable error and, barriny the

*See Appendix A for FORTRAN cquivalent.

**The verb "po” in Steps 1.58, 1.62 and 1.64.
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anusual, if V(J) is accepted for J = 2, 3 or 4, the error in the approximation

obtained is presumably less than or equal to E. Lf V(2) is accepted, it
tollows, because Step 1.3 sets V(1) to zero, that the approximation is less
than k.,

When V(4) 1is not accepted by Step l.62, the contral is not sent to
Step 1.38, but passes on to Step 1.94 for a print out. Inasmuch as the
quadrature of four terms yields the correct result for a polynomial
integrand of the seventh degree, the small prosram may well be adequate
for the integrands it will be called on to evaluate., After all, the
integrands it needs to approximate do not necessarily behave in an outrageous
fashion. To cover the contingency that sowme will be difficult, the small
provram is so modified in Algorithm 2 (which follows) that if V(4) is not
accepted, the interval (A,B) is halved and each half attacked separately.

If the interval of integration is to be halved and rehalved, there are
many wavs to go about it. One way is presented in the tollowing alsorithm:

Algorithn 2*

1.1 Set 0 = |

1.12 Set (V) = B - A

.14 Set U(Q) = A

l.16 Set 8 =0

l.13 Set J =1

1.3 Set Vv(J) =90

.38 sSet J =J + 1

1.4 Set K = J

1.42  Set V(J)Y =0

1.5 Set ¥ =K + 1

1,52 Set X = L) + DCJ,K)*HU)

1.5 Set V(J) = V(J) + C(J,R)*H(0)Y*F(X)
1.58 To Step 1.5 if K < J

1.62  To Step 1.18 if |V(J) -~ V(J-1) < &
1.64 To Step 1.38 if J < 4

*

See Appendix A for FORTRAN cequivalent.
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H(O)

H(0)/2

Set 0 0+ 1

Set H(D) = H(0-1) l
Set UCD) = U(0-1) + 1(0) ‘
To Step 1.183

Set S S + V()
To Step 1.94 if 0 =1 i
Set 0 =0 -1

To Step 1.18 (
Type S.

1]

—
o v
x» o
i

L .
O OWXXXNNINT
[o e IR SR AN\
W

et et p—t
.

o

In subdividing an interval, the symbol 0 is introduced whose larygest

b value at any time is equal to the number of intervals available to the

algorithm for processing. All intervals are tagged with an O-value. At
the beginning there is only one interval, [4,B]. So O =1, 1If the three
quadratures are unable to reach an acceptable result on this interval, it
is divided into two equal parts, the part nearest B is given the value

0 = 1, the other part retains the value 1, The attack shifts to the
interval with 0 = 1. T1If the attack is successful, the attack moves to

0 =1, 1f unsuccessful, 0 = 2 is divided and the two parts tagged with

the cardinal aumbers 0 = 2 and O = 3. Always the interval with the

highest O-value is the one in process until ultimately success comes to
the interval 0 = 1,

Algorithm 2, it will be noticed, is flawed with respect to the control
of error. Subdivision of intervals leads to an accumulation of error that
may exceed the value of & specified in Step l.h2. Although the algorithm
can he modified so as to insure an error less than B, the simplest and a '
likely adequate modification is a carefully chosen decrease in the value
of ¥, particularly in view of the fact that there are a number of other
sources of error to protect against on the way to the value of B(k).

The sccond algorithm will now be used to illustrate the conversion
of an integration in one dimensinn to an iterated integral in two

dimensions.
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Alzorithm 3"

.1 Set O(L) =1

G120 Set H[L,0(D)] = B(1) - ACI)
L4 Set U[L,0(1)] = A(IL)

.16 Set S(I) =0

.13 Set J(I) =1

.3 Set V[L,I(I)] = U

.38 Set J(I) = J(I) + 1

Set K(I) = 0O

Set V[I,J(I)] =0

Set K(I) = K(I) + }

Set X(I) = U[L,0(1)] + D[J(L),X(D)}*H{1,0(1)]

Do Part 2 for I = 2 if I = 1|

Set VII,J(I)]) = V[I,J(I)] + ClJIC(L),KCI)Y}*H[1,0C0)]*G(1)
To Step 1.5 if K(I) < J(I)

To Step 1.84 if |V[L,J(I)] - V[L,J(1) - 1]} < ECD)

To Step 1.38 if J(I) < 4

Set H[I,0(I)] H{T,0(1)]/2
Set O0(I) = 0(I) + 1

Set H[I,0(I)] = H[I,0(I) - 1]
Set U[I,0(I)] UlL,0(1) = 1) + H{I,0(1))
To Step 1.18

Set S(I) = s(1) + v{IL,J(D)]
To Step 1.94 if O(I) = 1

Set 0(I) = (1) - 1

To Step 1.18

Type S(1) if I =1

e ¢ o o s o
NN

P et et bt e e e e g e p o e
.

~>

1]

" s e «
X OO
1}

— e = e e e e
. .
WOXOXNNIIDIOO Ot e e
o O

&~

Do Part 1
Set 1 =1

[T o]
.
~ W

Except for the index I, the last algorithm and the preceding one are
identical for the first 1l steps. Step 1.5% has uo counterpart. The
counterpart, if it existed, would fall between Steps 1l and 12, Step 12
and those followinyg closely parallel Step 1.56 and following. The function

G(I) of Step 1,56 is defined by the relations

[s(z) , it l=1
G(L) = ¢
PRIX(D),X(2)] , if 1 =

s

*See Appendix A for FORTRAN equivalent,
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The value of G(I) for 1 = 2, identifies the iterated interal as ¢
B(1) B(2)
f dx f F(x,v) dy .
a(l) A(2)

It helps in understanding the two-dimensional alsorithm to call to mind
the principles of the iterated integral. As an example, take the iterated
integral displayed above. The last integration is a definite inteyral with
respect to x having as its integrand the result of a definite integral with
respect to y the latter having F(x,v) as an intevrand with x treated as a
constant. 1t the steps in the algorithm are examined carefully, it is scen
that the algorithm in its own way tollows the same path. The algorithn starts
with a quadrature with respect to x, or rather X(1). The first abscissa is
the first abscissa of the two-point Gaussian quadrature. But G(I) in
Step 1.56 requires S5(2), which is the result of a quadrature with respect to
v {or ¥(2)] with the integrand F{X(1),X(2)], the variable X(1) being held
constant, Hence, the quadrature with respect to ¥{(1) nust be temporarily
abandoned. This is accomplished by Step 1.54 which sends the control to
Part 2 with 1 = 2, 'The first step of Part 2, Step 2.3, sends the control
back to Part 1, i.e., Step l.l. The quadrature with respect to ¥X(2) then
bewins and continues without interruption until completed., Control then
returns to Step 2.7, which sets 1 = 1, completing Part 2. Control returns
to Step 1.56 with the required values of $(2) now available. Hence the
quadrature with respect to X(1) can contitue until shortly Step lo5% is

encountered artain, and so on,

E(1) and #(2) should not bhe given the same value bhecause the intearand
for the ¥(1)-quadrature has a component trom the X{1)-quadrature and «o

many have a scatter s large as E(2).  Finite differcaces ire well xknown
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for their seansitivity to scatter. Consequently, the programmed check for the
X(1l)-quadrature tends to magnify the apparent estimate, making acceptance
difficult, or even impossible. Experiaence indicates that E(1) and E(2) should

satisfy the relation,

E(LY < E(2)/10 .

The Algorithm for the Integral

1 \/ 2

a0

s . 2 t s 2 qa-q~

6( sin 2kt 't—‘;r dt (J)( sin 2\((_1 —i—:t——« d N

The second integral in the definition of B(k), unlike the first, is free

of such nuisances as discontinuities in its integrand and, if one selects
2 2
2 e2jk(q -t7)

. 22 . .
sin 2kt sia 2%q from the four components of as the trigonometric

factor, one has the simplest of the eight that are implicit in B(k)'s

5
definizion., The quantity sin 2kx” vanishes when x = W/nn/(Zk) and

)

n=19,1,2,... « Hence the arca of integration is divided into rectangular

sub=areas by the lines

[ x

q = np o,
*

Lt = myp o,

where p = 7/(2k), n = 0,1,2,.e. and n = 9,1,2,... . The integration over the
iafinite strip is accomplished in a piecewise fashion, Starting with the
rectanyle common to the first row and first colum, the calculation proceeds
rectanyle=by-rectangle along the row until a suitable test indicates the
remainder for the infinite alternating series is sufficiently small. The

next row is then siven the same treatment and finally the finite series of
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27 2
sums is summed to give the value of the sin 2kt~ sin 2kq” component of the

second integral. The steps in the algorithm, their explanation delaved,

tollow.
.1 Set p = w/(2%k)
L6 Set N(2) =1
L8 Set A(2) =0
.2 Set N(1) =1
«22  sSet A(1) =0
.24 set T(N(2)] =0
.26 Set B(2) = sqrt[N(2)*p]
.28 To Step 1.32 if B(2) < I
.3 B(2) =1
.32 Set B(1) = sqrt{N(l)*p]
.38 Do Part 2 for I =1
<42 set TIN(2)] = TIN(2)] + s(D)
44 To Step 1.56 if N(1) < i(1)
L46 To Step 1.56 if [S(1)| > E(3)
.48 To Step l.56 if s*S(1) > 0O

Set Z(1) = zZ(1l) + 1

To Step l.66 if Z(1) > i(1)

To Step 1.58

Set Z(1) = v

Set s = S(1)

Set A(1) = B(1)

Set N(1l) = N(1) + 1

To Step 1.32

To Step 1.88 1f B(2) = 1

To Step 1.8 if N(2) < i(2)

To Step 1.8 if |TIN(2)]| > E(3)
To Step 1.8 if TIN(2)]*T[N(2) - 1] > O

fo oo NS S @i e N L

o

T4 Set Z(2) = Z(2) + 1

.76 To Step L1.88 if Z2(2) > i(2)
./8 To Step 1.82

. Set Z2(2) =9

87 Set A(2) = 8(2)

. Set N(2) = N(2) + 1

To Step 1.2
Print output

— e et gt et s bt e e pt bt et et bt pt gt et b bt gt pt bt Pt et bt pt Pt et pmd P e et e pam e
.

.
X WXL XN NN NN NN

xX O &

2.1 Set O(1) =1

2.12  Set H{L,0(I)] = B(1) - A(TL)
2.14  Set U[L,0(1)] = a(L)

2.1 Set S(1) = v

2.18 Set J(I) =1

2.3 Set V{L,J(I)] =0

2.38  Set J(I) = J(I) + 1
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R Set R(L) = 1

2,42 Set V|L,J(1 )] =

2.5 Set K([) = R(I[) + }

2032 Set X(D) ULL,000) ] + DLJCL)Y ,KCE)T*H{ T, 50 )

2.54% Do Part 3 tor L = 2 if 1 =1

2.56  Set VI, 1(1)] = VILL,J(D)) + CHICD), <D s, u(n)]sa(t)
258 o Step 2.0 10 (1) < J(D)

2062 To step 2.34 i (VLI T = VIO = s B
2.oob Ser HlL,u()) = ufr,o(n)/2

2.08  Set (L) = (1) + 1

2.7 Set H{L,0C0)] = H{l.,u(l) - 1t}

2,72 set U1L,o00)) = v, 00y - 1) + a0

2,76 To Step 2.13

2.8 Sat S(I) = S(1) + VIL,J(1))

2.86 Done if (1) =1

2.88  Set o(L) = u(l) -1
2.9 To Step 2.1

3 .3 Do Part 2

3.7 I =1

[nputs tor tihe aloritha are, of course, X, the weishts and abscissas
for the three Gaussian quadratures, and the critical quantities #£(1) and
Y(2). In addition, there is a third eritical quentity, =(3), and two
critical intevers i(1) and i(2). f(heir roles are =made clear in the
tollowing explanation of the steps of the aljorichn.

Part 2 carries the main bodv of the computation and can be said to be
served by Parts 1 and 3. Steps prior to Step 1.3% prepare the wav Uor
part 2, Step 1.338 initiates the computations of Part 2 and, when Part 2
has finished with a rectanvle, steps subseqguent to Step 1038 sam the
result, select the next rectangle, if another is required, and take over
the tfanctions of some of the steps prior to Step .33,

The quantitics N(1) and 302 in sSteps 1ols and 1013 are detined by
stating that the nusbher paic {(N(1),N(2)] are the referene numbers totr
the rectmele common to the SCDEN colunn and N2 row.

TINC2Y] of step 1o24% is the runanins total, acenmbated rectanaloesby~

e

rectamtle alome the T;('l)th TOW.
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o

Steps L.44 through 1,56 express properties of converdent alternatingg
series. [t will be recalled that when @ sertes reqaches a term, atter
which it is strictly alternating and the magnitude of cach term is less
than the preceding term, then the magnitude of the last term calculated
is a bound on the remainder. The quantity Z{(1) in Steps 1.5, 1.52 and
1.50 is a count of the number of times in succession the terms from a
row have met these conditions., Step l.44 does not allow the count to
start until N(1) reaches a value thousht to be large enough to make
acceptance by happenstance unlikely. The character of the intesrand
tusures that such a value exists.  Step 1,46 returus the count to zero,
whenever 5(1), the nmagnitude of the s(1yth term, is not less than .in
appropriately chosen critical quantitv. Step 1.48 scts the count to
zero, if two successive terms (s is the value of the preceding tern)
are of the same sizn. When the count <succeeds in reaching a value

. . L *
greater than the iatewger i(1), also used in Step 1.447, the process

7
=
w

is presumed to have shown thie further sumning of the serie
unnecessary and control passes to Step lohn.  1f, however, the count
does not exceed (1), Step 193 sends the contral to Steps 1.8
theoush Tend i which the first three steps dre partial preparation

for the nexs rectivtle in the royw betore Step 1.6 passes the control

th Step 132, Where the preparation {2 ooapleted,

* .
obuvioans

, it experience iadicates ditteriae values should bhe used, there
{5 a0 roeason Wwhy ot
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The Alsorithm for the cos 'lkt_z_ cos “Z_k_q2 Component of the Second Intewsral
oy ) . . "o . } .
Because cos 2kx~ vanishes for x = x/2, 3«/2, 5a/2, ..., the width of

the first row and also the first column is 1/(4k) and the lines subdividing

the Area or intewration are

and
q =Y Qn-1)*p
where p = 7/(4*%%), (2n-1) = 1,3,5,... and (2a-1) = 1,3,5,... .

. 2 2
onlv a few steps in the algorithm for the sin 2Zkt7 sin skq™ component

change., The steps are:

1/ (4%K)
sart [(2%N(2) - 1)*p]
sqre [(2%N(1) - 1)*p]

1.1 Set p
1.26  Set 3(2)
1.32 Set B(1)

]

-

- s . 2 g Y . . e
The Alrtorithm for the sia 2kt® cos Ikq- Component ot the Second Iatesnral
For this component the width of the first column is #/(2k) and of the

first row 7/(4k). Two p-values are needed

p(1) = 7/(2%k)
and

p(2) = 1/(4%k) .
Hence

1.1 Set p(1)
1.12  Set p(2)
1.26  Set B(2)
1.32  Setr B(1)

T/ (2*K)

1/ (4%k)

sart [(2%N(2) - 1)*p(2)]
sart [NCL)*p(1)]

il

1

e e
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The Alvsorithm for the cos 2kt sin 2ka- Component of the Second Inteusral

In this case
pll) = 2/C4k)
and

p(2) = »/Q2x)

1.1 Set p(l) = u/(4%k)
l.12  Set p(2) T/ 2%K)
26 Set B(2) sqrt [N(2)*p(2)]
1.32 set B(1) sqrt [(2%N(1) - 1)*p(1)}]

1

Toe Algporichns tor the First Inteqral

The rirst inteural differs from the sccond in its area of intevration
and its intesrand.  The area ot intesration of the former is a strip in the
t-direction with a finite boundarv at t = 1, The area of inteyration otf the
lLatter is the same except that the tianite boundary is at t = b, This

difference is of no dreat conscequence.

The difference in the iatevrands is a little wore significant. The

tirst integral has the quantities t -1 and g - t in its intexrand, the
second, the quantitites V t + | and q + t.
The infinite singularity orisinating in t - 1 is intexrable and

readily handled by means of quadrature formulas for the weight function
e

The sincularity caused by g - t is not integrable, hut it appears in
the corner »f the area of integration, where g = t = | and where the
quantity Y (1 - q) vanishes. The improper double inteegral can be shown

to exist by comparingg it with the improper Jouble intevral obtained bv

replacing the trivononetric factor by unity. The sinsularity is no problem

s L

aunerically, thoush it does slow the evaluation.

—— A




~25~ 27 Harch 19%1
GHP 180G Thz

The changes necessary to convert aluorithms tor the second integral
into those for the first are few. In the case where the trigonometric

9 9
tactor is sin 2kt sin 2kg  thev are:

1.12 Set n = first [i = 1)1 @ i*p > 1)

1.2 Ser N(1) = n

1,22 Ser A(l) =1

2.51 To Step 2,33 if L = 1 and VIL,0(1)] = 1

2,525 To Step 2.54%

2,33 Set X(1) = CU{L,001)] + dJCL),RCE) =1, (1))

2,35 To Step 2,57 if L = 1 and U{L,0(1)] =1

2.56% To Step 2.538

2,57 Set VILLJ(D] = VII,J(1D)) = clI(D),2(D] * sart H(L,0(D] % (1)

The rizht~hand member of Step 112 is a tuanction of i that fiads the
First of a sequence of values of 1 that acets the prescribed condition,

In this case, the sequence is 1 = 1,2,3,...,1000 and the prescribed condition
is that p * 1 be wreater than unity. The value of n for ecach value of
can, otf course, be found by a brief calculation and treated as an input.

One can, however, clect to write a small subroutine cquivalenc to the
function orf Step .12,

The steps added to Part 2, it will be seen, provide an alternative to
Gaussian quadratures whenever 1 = 1 and U[1,0(1)}] = 1. The alternative is
A Gaussian quadrature for the weight function l/\/—. The lnwer case
symbols, ¢ and d, are rvespectively the weights and abscissas corresponding
to the latter weight trunction on the interval [D,1]. They are derivable
from the weizht and abscissas for w{x) = 1 in the {interval (~1,1). Sce
Appendix B.

The changes necessary to convert the remaining three alyorithms for
the second integral into those tor the first integral differ verv little

from those above.
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The steps added to Part 2 are still needed to take care or the

singularity at t = 1 and must, of course, be retained. The only step that
. 2 2
changes in Part [ is Step l.12. For the factors sin 2kt™, cos 2kq~, one
has 1.12 n = firsc |1 = 1(1)100: i*p(1) > 1]. The oaly chanse s the
N o

unit index, or subscript, tor p. For the rfactors cos 2kt7, cos 2kq~ and
2 2 .
cos 2kt™, sin 2kq” the step defining n beconmes
1.12 no= first [1 = 1{)10: (2%1 - 1)*p(1l) > 1].
Step l.12 now reads n = the tirst value of 1 in the sequency
i =1,2,3,.,100 such that (2%i = D)*p(1) > 1 and n = 1,3,5,...,199.
The complete FORTRAN prosram for computing the La tunction is

presented in Appendix C.
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Appendix A: FORTRAN Alporithms

The following algorithms are the FORTRAN coded equivalents of the first
three algorithms appearing in the text. Statement numbers occurring in the
text have been retained, where possible, to facilitate easy following of the
logical path of the programs.

Algorithm 3 has been written as two subroutines. The first performs
the "outer” iteration which depends on the value returned by the second or
"inner" iteration. The subroutines would, in practice, be called by a main
program which passes the values of the "outer” limits of integration [A,B],
the "inner” limits [A2,B2] and a parameter R (if needed for the evaluation of
F(X,Y,R)). The result of the double integration is the variable § returned

to the main program.
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ALGORITHM 1: 2, 3, 4 POINT GAUSSIAN QUADRATURE ON FULL INTERVAL [A, B]

PROGRAM GAUSSL
IMPLICIT RZAL%#3(A-H,0-2)
DIMENSICN C(&494)+D(&s&) 2V (4)

0ATA
DATA
DATA
DATA
DATA

F(X)=

E/+0002/+A/0.0/+3/3.14159265/4C(2+L}/e530/yD(3+2)/ 500/
C(3¢1)/e2TTTTTITTTTITITIDO/+C(%v1)/e06943184420297300/
C(3+¢2)/-440540b500646544D0/4,C(%42)/«326072577431273D0/
C{4vy1)/-17392742256872700/,0(3+1)/11270166537925800/
D(4+2)/-3300094782G757290/+1PR/3/

DSIN{X)

C(2+2)=C(2s1)

C(3+3)=C(3s1)

C(493)=C(%22)

C(4s4)=C{%4s1)
D(2y1)=.500~0SGRT(3.000)/6.0D0
D(2,2)=1-0D0-D(2,1)
D(353)=1.000-D(3,1)
D(4¢3)=1.000-D(4+2)
D{4+4)=1-000-D(4%s1)

H=B-A
V(l)=

Do 5

Vi{J)=

ba 7

0-.000
J=2+4
0.000
K=1+J

X=AeD(J,K)=H

V({J)=

V{JY+C{JsK)FHFF (X}

IF{DABS(V(J)-V(J-1)).LE.E) GO TO 13
CGONTINUE .

HWRITE(IPRsLl) JeV{I)
FORMAT(I2+2X9E16.8)

sTQP

END
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ALGORITEM 2: 2, 3, 4 POINT GAUSSIAN QUADRATURE WITH SUBDIVISION OF INTERVAL [, F]

PROGRAM GAUSS?2
IMPLICIT REAL=8(A-H,0-2)
DIMENSION C{%494)eO{4eo4)eV(4)yH{10)»U([10)
DATA E/«0C02/94/0e0/983/3e141592265/4L(291)/5D0/+D(3+2)/.500/
DATA C(3¢1)/2TTTTTTTTTITTITIOO/ 2v0(491)/e069431844202973D0/
DATA C(342)/44444054446444844D00/+,C(%+2)/.32607257743127300/
DATA C{4+1)/+17392742256872700/+s0(341)/112701665379258D00/
DATA D(4+2)/+330009478207572D0/+1PR/3/
F{X)=DSIN(X)
C(2+2)=C(241)
C(3+3)=C({3s1)
C(4+43)=C(4v2)
C(4+4)=C(4+1)
D(2+1)=.5D00~-DSART(3.000)/6.0D0
D(292)=10D0-D(2+1)
D(3+53)=1.0D0-0(3s1)
D(4+3)=1.000~-D(%4+2)
D{(4+4)=1.000-D(%921)
N=1
H{N)=B-A
U(N)=A
S=0.000
5 V{1)=0.0D0
DO 7 J=2,4
V(J)=0.0D0
DO 10 K=1,J
X=U(N)+D{J+K)=H(N)

10 V(J)=V{JI)+C{J9K)SH(N)SF (X)

IF (DABS{V({J)-V(J-1))«LE.E) GO TO 21
7 CONTINUE

H(N)=H(N) /2.0

N=Nel

H(N)=H(N=1)
U(N)=U(N=Y)+H(N)
GO 70 5

21 S=S+V(J)
IF(N.EQ.1l) GO TO 25
N=N-1
GO TO 5

25 WRITE(IPRsY) JsS

1 FORMAT(I2,2XyE16.38)
STOP
END
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ALGORITHM 3: TWO DIMENSIONAL 2, 3, & POINT GAUSSTAN QUADRATURE WITH

118

150

138

184

194

SUBDIVISION OF INTERVAL [A,B]

SUBROUTINE GAUSSA(AvBsA2+B2+R+S)
IMPLICITY REALZ8(A-H,0-2)

DIMENSION C{4+4)sD(4y4)+V(4)eH{10)+U(10)
DATA E/.0C0200/+C(2+1)/.500/4D(3+2)/-5D0/
DATA C(3¢l)/«27TTTTTTTTTITTTITIOO/90(%441)/.069431844202973D0/
DATA C(342)/44464464444444L4D0/49C(492)/32607257T743127300/
DATA C(%491)/«17392T742256872700/+D(3+1)/.112701665379258D0/
DATA D{%12)/-3300094¢78207572D00/+1PR/3/
F(XeYsR)=YZDSIN(X)

C(2+2)=C(2s1)

C({3+3)=C(3+1)

C(4+43)=C(4+2)

Clav4)=C(4+1)
J(2+1)=.5D0-DSQRT(3.0D0)/6.000
D(2+2)=1.0D0-D(2+1)

D(3+3)=1,-000-0(3+1)

D(4+43)=1.000-0(4+2)

D(4+4)=1000-D(%49v1)

N=1

H(N)=B-A

U{N)=A

S=0.000

V({1)=0.0D0

DO 138 J=2+4

V{J)=0.00D0

DO 150 K=1l,4

X=U(N}+D(JsX)TH(N)

CALL Gl{XsYyA24B24R)
V{J)=V(J)*C(JsK)TH(N)ZF (X9 Y 4R}
IF(DABS(V(J)-V(J-1)).LE.E) GO TO 134
CONTINUE

H{N)=H(N)/2.0D0

N=N+1

H(N)=H(N-1)

U(N)=U(N=1) +H(N)

GO 70O 118

S=S+V(J)

IF(NeEQ.l) GO TQO 194

N=N-1

GO 70O 118

RETURN

END

arm—— L - — RIS

i
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184

194
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ALGORITHM 3: TWO DIMENSIONAL 2, 3, 4 POINT GAUSSIAN OQUADRATURE WITH
SUBDIVISION OF INTERVAL {A,B] ~ continuation

SUBROUTINE Gl (Y+S21A4B4R)

IMPLICIT REALZT8(A-H.0-2)

DIMENSION C(4s4)2D(424)sV(L4)eH(10)U(LO)Y
DATA E/.000200/+sC(2+1)/5D0/+D{3+2)/+500/
DATA C(321) /2777777777 77T777D0/90(491)/0694316544202973D0/
DATA C(3+2)/444444404444444400/4C(4+2)/e3260T7257743127300/
DATA C(4+1)/«173927422568T727D0/+D(3+1)/.11270166537925800/
DATA D{%4+2)/.330009478207572D0/+1PR/3/
F(X,Y,R)=DSIN(X)

C{2+2)=C(2+1)

C{3¢3)=C(3+1)

C(4+3)=C(4+2)

C(4+4)=C(4s1)
D(2+1)=.5D00-DSQRT(3.0D0)/6.00D0
D{(2+2)=1.0D0-D(2+1)}

D{3¢3)=10D0-D(3+1)

D{(4+43)=10D0-D(412)

D{(4+94)=10D0-D(4+1)

N=1

H(N)=B—-A

U(N)=A

S=0.000

V(1)=0.000

DO 138 J=2+:4

V{J)=0.000

DO 150 K=144

X=U(N)*D(J+K)=FH(N)
V{J)=V{J)+C(JsK)TH(N)SZF (X9Y4R)
[F(DABS(V(J)-V(J-1))eLEE) GO TO 184
CONTINUE

H{(N}=H(N)/2.0D0

N=N+1

H{N)=H(N-1)

U{NI=U(N-1)+H(N)

GO 70 118

S=S+V(J)

IF(N.EQ.1l) GO TO 194

N=N-1

GO TO 118

RETURN

END
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Appendix B: Two Sets of Gaussian Weights and Abscissas

INTERVAL = [0,1] WELGHT FUNCTLON = |
'.Jl N I
n=2
e5 21132 43654 05137
<5 . 78867 51345 94813
n=3
W27777 77777 77778 S11270 16653 792358
JALALL LALLL L4444 .5
Cy = C .88729 33346 20742
n=4
17392 74225 68727 J06943 84420 29730
232607 25774 31273 33000 94782 07572
Cy = Cy .HHh999 05217 92428
Cy = Cy 293056 81557 97027 !
n=>
.11846 34425 28095 04691 00770 30668
«23931 43352 49683 23076 53449 471539
28444 44444 L4444 e 5
Ch = Oy L7923 46550 52341
Cy = Cj .95308 99229 69332
n=b
08566 22461 89585 .N3376 52423 98424
.18038 (7865 24070 .10939 53067 66867
+23395 69672 86345 .33069 03069 53401
Cy = C3 41930 93930 41599
Cs = Cp LA3060 46932 33133

Cp = C) L9662 47571 D1576




INTERVAL

«11558
«74155

.05693
43719
.86908

03364
.27618
63467
92215

02210
18733
4h159
«74833
.94843

01568
.13530
.33069
61930
81742
96346

=[O

71099
57471

11596
78527
43784

82680
43138
74762
06084

35688
135676
73614
462383
39262

341066
N0li6
04069
95930
80132
12963

o1

97048
45810

n=3

70074
51095
32472

n=4

67507
72464
34637
920538

07218
52445
96266
87281
28836

n=06

07400
55248
58401
41599
66875
70913

-4~

WEIGHT FUNCTLON = l/\/x

1.3042

.93532
72152
342645

72536
.H2741
44476
.20245

39104
.53853
.43817
+29390
13334

49829
. 46698
.40633
32015
21387
09435

90309 72509
.H38570 96902 74903

78691
31460
89347

75667
32917
20689
70725

34494
34386
27250
26983
268386

40916
50730
48534
66570
36519
06727
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45382
96278
58340

56724
55774
06743
380752

29951
19992
31964
01162
17376

26806
76710
46132
86692
90636
73024
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Appendix C: Tlaplementation of Alpgorithms for Computing the Lay Function

The following example is an adaptation of the preceding algorithnms
applied to the computation of the lag function. TUmplementation follows
directly from that outlined in the main body of this manuscript. The few

exceptions are clarified in the following outline.

1. MAIN PROGRAHM: For each value of R (R=k), eizht double integrals are
evaluated. The real and imaginary parts (SRE, SIM respectively) are the suns
of the corresponding contributions (SUM(I); of the appropriate integrals. No
output statements are supplied as the relevant data are subject to user
discretion.

For efficiency and economy, the q iaterval (9,1] was held constant in the
main program since the q algorithm provides for subdivision of the interval
when necessary. In light of this, a six-point formula was used which is
theoretically exact for polynomials of order eleven or less. For the naximun
value of k used (10.0), the nunber of nodes on the interval [0,1] is less than
eleven.

T(1) and T(2) are the n and (n-1) partial sums of the alternatiny series,
When the series is terminated, they provide an upper and lower bound on the
solution. T(3) is the midpoint and is accepted as the correct result, T(4)
and T(5) are summations of the totual estimated errors in the t and o
integration respectively,

ECINT) is used as a pseudo relative error bound on the nth partial sum.
When the contribution to T(1) is less than E(INT) or some predetermined value

(.0001 in this case), the summation of the alternating sceries terminates,
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TI. SUBROUTINES:

(a) GAUSS1, GAUSS2 - These perform the quadratures for t and q respectivelv.
The weights and abscissas for each type of quadrature are initialized in
GAUSS] and passed to GAUSS2 in the arrument list of the CALL statement, These
subroutines are the FORTRAN equivalents of the last algorithm in the text
which uses a relative error bound. Variables not appearing in the algorithm
are explained as follows.

JJ(N) saves the value of the order of the last quadrature accepted. This
prevents duplication of effort in recalculating lower order quadratures
préviously computed and accepted by GAUSS1 and GAUSS2.

SV(N) saves the contribution of the N'N subinterval which is added to the
total sum at Step 100 should the condition at Step 200 be met.

EQl is the estimated error in the q-integration for a specific value of
t. TEQ is the sum of the estimated q error in the entire t interval just
computed.

(b) PVAL - Calculates the factor used to determine the zceroes of the sia or

cos argument for the boundaries of the subintervals on the infinite © range.

(¢) LVAL - Determines the integer wmultiplier for the first upper limit in t

when the lower limit = 1.0.

(d) ALV - Sets the lower limit on the t interval to 0.7 ar 1.0 depending on

which integral is being evaluated.

(e) BIV - Calculates the next node point nn the t interval.

(£) FT/FQ - Evaluates the function at 4 specific abscissa in the appropriate

t/q quadrature.




............

120

132

156
1586

138

900

800

: MAIN ORIJGRAM &g

IMPLICIT REALS2 (4-H,0-2)
DIMENSTIIN T(5)eSUM(3) 96 (3)2R7 (24)
COMMON Als21942,32434 10T

CATL I1/5/+RE/eC003202/+1PR/5/9yP1/53e141592552S497Q00/)
DATA RR/.CL..QB,.QAs.D‘J'.O%..1..12..1:)'.2..3v.’~...S..s..L..‘j'.?v
D1 a091l o9l efel a9l eB92e00 2503000 3e5%1%eT00%0a915eT0+4354%4540970
>8.0¢9.0+10.3/

N3 820 MR=1,24%

P=RR (NR)

20 900 INT=1,8

SUM(INT)=0.000

S=0.000

A2=0.000

CALL PVAL(P1lsP2,4P1I)

CALL LVAL{(Pl.L)

Il=L+4

M=L

CALL AlV

T(1)=0.0D0

T(4)=0.000

T(5)=0.000

82=1.0C0

CALL BlV{(M,P1)

CALL GAUSSI(S1.ET,EQ)
T(&4)=T(4)+=T

T(5)=T(5)+EQ

T(2)=T(1)

T(1)=T{1)+S1
E({INT)=OMAX]1({DABS(T(1)*RE)+«10~-3)
IF(MaLT-I1l) GO 7O 156
IF(DABS(S1).GT.E(INT)) GO TO 15¢
IF(S*S1.6T.0.0D0) G3 TO 1556
12=12+1 |

IF(IZ-I1) 158,158,188

1Z=0

S$=S1

Al1=31

M=M+1

GO TO 132

T(3)=(T(1)+T(2))/2.000
E(INT)=DABS(S1)/2.000
SUM(INTI=T(3)

CONMTINUE
SRE=SUM(1)+SUM{2)+SUM(3)+SUM[&)
SIM=2SUM(5)=SUM(6)*SUM(T)=-SUM(8)
CONTINUE

STN?

END
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SURRTUYTINE GAUSSL(STZ.TE2)
IMOLICTIT REALTZ (A-H,C-7)
COMAIN AvBaAZ2+324R,INT
DIMZNSION C(Hs5)eD(290) 2V {O)eH{LIDD)»U(LIB0)eJ(150) s (5¢6) sl (5+2)
SIMINSION SS{L1S5C)sdJ(15C)sSV(190)
DATA C(2+1)9C(2+2)/72%.520/
DATA C({3+1)+C({3+43}20(3+2)
D/2u2TTTTTITITTTTITTITEC 08466060 0050640664444N00)
TATA Clael)oeC (L) eC(%92)2C (402
>/2%.1739274225563727350, 2432507257 74231273030/
DATA C(591)+C(5945)9C(5+2)2C(Sv4)+C(5+3)
>/2%41184534425230352C0, 2%.23931433524958300,
> «2344444444446454400/
DATA C(691)sC(O6+6)9C(512)9C(E95)sC(5+43)+C(H+4)
>/2%.855622461895350~1y 2%.130380736524%070D0, 2%.233356267235345272/
DATA D(2+1)2D(24+2)
>/.211324865405187100, «18867513645943129D0/
CATA D(34+1)+0(3492)+0(3+3)
>/«11270166537925900, «5N0, «887298334620752D00/
OATA D(491)sD(%492)e2(043)eD(G9%)
>/634318442029730~-1, «33000947320757200, «£5999052179242200%
> «332563155797C2700/
CATA D{591)90(5¢2)1D({5¢3)99015+4)+0(54+5)
>/ «452100770306630-1, «23076534434715900, «520,
> «Th323465505284100. «35308992295933220/
DATA D(9413190(5+2)98(633)+0(614)20({595)sD(hr5)
>/e337652428934240-1, «16939330576636T700, «380590636955340120,
> «51730959304159900, .8305606459323313300y «49562247571215756D0/
DATA W{2e1) W (24+2)
>/1.30429030972509200, «635709690274903020/
DATA W(3y1l)sW(342)eW(3+3)
>/+93582786914533200, «7215231456036278900 +3426483384758340302/
DATA W{4sl) oW (G 92)sd(4s3)sW(Lsl)
>/.72536756575572420 «65275%1329175577400, «&46T7520583905674800y
> »202457072580752D00/
CATA W{(Ssl)sW{S592) 97 {5+43)sW(59L)9A4(5+5)
>/5391048449423950603, «53R53343851999200, «438172725C03125400,
> «293902693301162090, «132242683561737620/
DATA W{691)sW{BH12)sn(623)sW(H94) s d(635)sW(6s6)
7)/-49829409162630600- «45669350730767100C0C «40533485344613200,
> «32015665708669200 «21387865193063530 «943506727730240-1/
DATA Z(2+1)92(2+2)
>/.11558710999703477020, «741555747145809900/
DATA Z2(3+1)92(3+2)+2(3+3) v
D/ 5693911596700 740-1+ «437197852751094600, - 869084373432471500/
DATA Z(4el)9v2(%42)92(493)9Z2(%14)
>/ 33648268067506920-1, «276184313872464400, e534577475234637100,
> «922156608492052300/
DATA Z{591)0Z2(5+2)92(5143)92(5+4)+2({5+5)
>/+221635683807217570-1, «187831567652445300y
> «451597361456265200., «748334623337281300, «7434939262333531C0/
DATA Z(691)92(5+2)92(693)22({bea)s2(6+5)92({5+6)
2/.156334056507400470-1, «135300011655248100, «330690406958340100,
2 +51930959304159900, «317428013266875220, +3634651295370912800/
DATA RE/.5D0-3/,V(1)/0.000C/




~NJ
A%
N

[AV]

20

—t

N

™~
(@]

100

W

Q
Q

~30-
Nwl

.

Ji(l)=2
SV({1)=35.0CD
T{MN)=1.0063
~=1.0062
H(N)=3—A
U(Ny=2A
$=3.05C
T==3.C20

T=7=2.020

IF{D(N).LE.E) GO TD 100

M3=JJ(N)

I5(MNJ=-5) 30,430,509

0 12 J=NJss

V(J)=0.000

£31=0.,020

0330 23 K=1l4d

X=J(N)+D{JyK)HHN)

GO TO(191929291919242)s1IMT
S{U(N) «E2.1.2D0) XU (NY+Z{JoKYyH V)

CaLll GAUSSZ(Xs+YsCrDyED)

£Q1=201+50Q

5T TO(393+49492935444) INT
IF(U(N)«EQ.1.0200) G3 T3 «Q2

CALL FT(XsYsFX)

V() =Y ()0 (J9X)HH(N) HFX

G3 T9 20

CalL FT{XsYsGX)

V{d)=sV{I)Y+W (o X)BEOSTPTLZ (JaK) )N (N)=GX

CONTIMUE

SS(NY=V(J)

JI(N)=d+1

Q(N)=DABS(SS(N)=SV(N))
IF(2(N).LE-E) G3 TD 100

SVMY=SS({N)

CONTINUE

H{N)=H{N)/2.000

MoMe)

H{M})=H(N)

U(MISU(N)+H (N

Q(M)=2(N)

JJI(N)Y=2

Jd(My=2

SV{M)=0.0D0

SV (%) =0.000

G3 TO 200

S=S+SS(N)

SV(N)Y=SS(N)

TE=TE+Q(N)

TEQ=TEQ+£EQ1

N=N+1

IF(N.LT.Ms1) GO TN 200
IF(TE.LE.RE=DARS(S)) GO TO 300
N=1

E=(TE-RE20A9S(S))/M

Go T3 222

2ETURN

IND
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SURACYTIME GAUSS2{ VY940, D.T2)

ITHPLICIT RZALHZI(A--,0-7)

COMMON Al eBleAeBexe INT

DIMINSION C(L 461 13(n95) 1Y {5)sH{150)+J(150)+%5115D)
DIMINSTION SS{150)+JJ(152) SV (150)

DATA RE/.SD=6/,Y{1)/0.0270/

N=1

P{M)=8~A
U{MNY=A4A
222 S=0.000
TE=0.0320
290 IF{Q(NY.LE.E) GO TN 1040
NJ=JJ(N)
IF(NJ-6) 304+20.500
30 DN 10 J=NJ»sb
V(J)=0.000
DS 20 K=1,J
X=D(N)+*D(JsK)=H(N)
CaALL FO({XsYeFX)
27 V(J)sV{J)+C(JsK)TH(N]FFX
SS{MNY=V{J)
JJ(My=d+1
DM)=DABS (SS(N)-SVY{NY}))
IF(O(N).LE.E) GO TO 100
SV (MN)=SS({N)
10 CONTINUE
500 H{M)=H({N)/2.00D
MAzMe]
H{M)=H{N)
U(M)=U[N)*H{N)
Q(M1=3(N)
JJI(N)=2
JJ(M)=2
SV (N} =0.000
SV{M)=C.000
GO TD 200
100 S=S5+SS(N)
SV(N)=SS(N)
TE=TE+Q(N)
NN+l
ﬁ IF({TE.LE.RE=DABS(S)) GO TO 300

N=1
Ex(TE-REZDAZS({S))/M
COo TQ 222

RETU9N

END

)
Q
2
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SURRQUTINE PvalL (P1eP2+°21)
IMOLICIT 28aAL09(8-4,2-7)
COV\.rJ\J :1‘51'A21'§2v3\'lk.
GO TO( 1929192923364 23,6)410MT
1 21=PI1 /(203383
P2=PI/(2.C22%R)
2ETURN
2 P1=Pl/(4.CD0%=R)
P2=P1/{4«0035=R)
RETURN
3 P1=21/(4.CD0%=R)
P2=PI1/({2.00C=R)
RETURN
4 P1=C]/(2«000%R)
P2=P1/(4-000%R)
RETLAN
END

-

SU3RCUTINE LVAL(Pl,L)
; IMPLICIT REAL%8(A-H,0-2)
! COMMON A1431,42482,3,INT
i GO TO(192+353+2,15353)1INT
1 50 10 I1=1,100
! L=1
§ IF(L%P1.5T+1.CD0)RETURM
' 10 CONTINUE
RETURN
2 .00 20 1=1,100
L=1
IF((25L-1)%P1.6GT«1.000) RETUEN
20 CONTINUE
RETURN
3 L=1
PETURNM
END

T B a vy eyl L 18




n

SUBRIJUTINE alvy

IMOLICIT REZALSZS(A=-R,0-2)
COMMOYN A1 93122 ,2242,1IM7
GO TO(2+29 019252+ 1) ,INT
Al=0.0CQ

RETYURN

21=1.020

RETURN

EMD

SUZROUTINE BlV({MeP1l)
IMPLICIT REAL=B(A-H,0-2)
COMMON Al 2B1lsA2,529yR4INT
GO TO(1e2914v292919291)+INT
B31=DSQART(M=0P])

QETURN
21=0DSQRT((2xM=-1)=P1)
RETURN

END

27 March 1981
GHP:SJG:1lhz




-43- 27 March 1981
. GHP:8JC:lhz

SUSRNUTINE FT(XsYyFX)
ITMOLICIT RCALSRI(A=-H,0=-7)
COMMNN Al 431942932, 24TNT
u GO TO(19293+4929L94+2),,1M7
1 FX=YuDSIN(2.000%20X2X) /8S39T(1.0700-1.003/X)
FETURN
FX=Y30C00S (24002523 X3X) /3S2RT(1.0D0-1.000/X%)
RETURNM
3 FX=YXOSIN({2.000u0:XuX)/0SCRT(1.000+1.000/X)
RCSTURN
4 FX=Y2DCOS(2.0D03RuXEX) /DSCRT{1.C03+1.000/x)
RETURN
END

~N

SUSRQUTINE FC(XyYsFX)
IMPLICIT REAL=B(A-H,0-2)
COMMON Al+31+A4249324R,INT
GO TO(1ly2+39s49102¢394)INT

1 FX=0SIN(R%#X5X%2.000)=0S2RT(1a000/X-1.000)/(1.300-Y/%)
RETUIN

2 FX=DCOS (=X:X%2.000)%#0SIRT(1.000/X=1.000)/(1.G00-Y/X)
RETURN

3 FX=DSIN(R#X2X22.000)%DS2PT(1.GD0/X~1.000)/{1.000+Y/X)
RETURN

4 FX=DCOS (R¥“X#X%2,000)¥DSART(1.000/X~1.000)/(L.300+Y /X
RETURN

END
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